Страница:
<< 1 2 3 4 5 6 [Всего задач: 29]
|
|
Сложность: 4 Классы: 7,8,9,10
|
Сто мудрецов хотят проехать на электричке из 12 вагонов от первой до 76-й станции. Они знают, что на первой станции в два вагона электрички сядут два контролёра. После четвёртой станции на каждом перегоне один из контролёров будет переходить в соседний вагон, причём они "ходят" по очереди. Мудрец видит контролёра, только если он в соседнем вагоне или через вагон. На каждой станции каждый мудрец может перебежать по платформе не далее чем на три вагона (например, из 7-го вагона мудрец может добежать до любого вагона с номером от 4 до 10 и сесть в него). Какое максимальное число мудрецов сможет ни разу не оказаться в одном вагоне с контролёром, как бы контролёры ни перемещались? (Никакой информации о контролёрах, кроме указанной в задаче, мудрец не получает. Мудрецы договариваются о стратегии заранее.)
|
|
Сложность: 5- Классы: 9,10,11
|
Фокусник с помощником собираются показать такой фокус. Зритель пишет на доске последовательность из N цифр. Помощник фокусника закрывает две соседних цифры чёрным кружком. Затем входит фокусник. Его задача – отгадать обе закрытые цифры (и порядок, в котором они расположены). При каком наименьшем N фокусник может договориться с помощником так, чтобы фокус гарантированно удался?
|
|
Сложность: 5 Классы: 8,9,10,11
|
Для прохождения теста тысячу мудрецов выстраивают в колонну. Из колпаков с номерами от 1 до 1001 один прячут, а остальные в случайном порядке надевают на мудрецов. Каждый видит только номера на колпаках всех впереди стоящих. Далее мудрецы по порядку от заднего к переднему называют вслух целые числа. Каждое число должно быть от 1 до 1001, причём нельзя называть то, что уже было сказано. Результат теста – число мудрецов, назвавших номер своего колпака. Мудрецы заранее знали условия теста и могли договориться, как действовать.
а) Могут ли они гарантировать результат более 500?
б) Могут ли они гарантировать результат не менее 999?
|
|
Сложность: 5 Классы: 10,11
|
На каждой из 2013 карточек написано по числу, все эти 2013 чисел различны.
Карточки перевёрнуты числами вниз. За один ход разрешается указать на десять карточек, и в ответ сообщат одно из чисел, написанных на них (неизвестно, какое).
Для какого наибольшего t гарантированно удастся найти t карточек, про которые известно, какое число написано на каждой из них?
Страница:
<< 1 2 3 4 5 6 [Всего задач: 29]