ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Диаграммы Юнга  (4, 1, 1)  и  (3, 3, 0)  не сравнимы, – ни одна из них не мажорирует другую. Есть ли еще такие несравнимые наборы с суммой 6?

б) Найдите все несравнимые пары наборов для  s = 7.

Про диаграммы Юнга смотри здесь.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 591]      



Задача 32784

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2
Классы: 7,8

Какое самое большое число ладей можно поставить на шахматную доску 8 на 8 так, чтобы они не били друг друга?
Прислать комментарий     Решение


Задача 21972

Темы:   [ Принцип Дирихле (прочее) ]
[ Деление с остатком ]
Сложность: 2+
Классы: 6,7,8

Дано 12 целых чисел. Докажите, что из них можно выбрать два, разность которых делится на 11.

Прислать комментарий     Решение

Задача 21977

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2+
Классы: 6,7,8

Докажите, что в любой компании из пяти человек есть двое, имеющие одинаковое число знакомых в этой компании.

Прислать комментарий     Решение

Задача 21986

Темы:   [ Принцип Дирихле (прочее) ]
[ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 6,7,8

Докажите, что среди степеней двойки есть две, разность которых делится на 1987.

Прислать комментарий     Решение

Задача 21987

Темы:   [ Принцип Дирихле (прочее) ]
[ Деление с остатком ]
[ Разложение на множители ]
[ Разбиения на пары и группы; биекции ]
Сложность: 2+
Классы: 6,7,8

Докажите, что из 52 целых чисел всегда найдутся два, разность квадратов которых делится на 100.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 591]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .