Страница:
<< 33 34 35 36
37 38 39 >> [Всего задач: 606]
|
|
Сложность: 3+ Классы: 7,8,9,10
|
Докажите, что каково бы ни было целое число n, среди чисел n, n + 1, n + 2, ..., n + 9 есть хотя бы одно, взаимно простое с остальными девятью.
|
|
Сложность: 3+ Классы: 8,9,10
|
2n = 10a + b. Доказать, что если n > 3, то ab делится на 6. (n, a и b – целые числа, b < 10.)
|
|
Сложность: 3+ Классы: 8,9,10
|
При каких целых n число 20n + 16n – 3n – 1 делится на 323?
a, b, p – любые целые числа. Доказать, что найдутся такие взаимно простые k, l, что ak + bl делится на p.
|
|
Сложность: 3+ Классы: 8,9,10
|
Какое наибольшее количество чисел можно выбрать из набора 1, 2, ..., 1963 так,
чтобы сумма каждых двух выбранных чисел делилась на 26?
Страница:
<< 33 34 35 36
37 38 39 >> [Всего задач: 606]