ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 606]      



Задача 60762

Темы:   [ Арифметика остатков (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 4-
Классы: 9,10,11

Пусть числа x1, x2, ..., xr образуют приведённую систему вычетов по модулю m.
Для каких a и b числа  yj = axj + b  (j = 1, ..., r)  также образуют приведённую систему вычетов по модулю m?

Прислать комментарий     Решение

Задача 60780

Тема:   [ Малая теорема Ферма ]
Сложность: 4-
Классы: 8,9,10,11

Докажите, что  751 – 1  делится на 103.

Прислать комментарий     Решение

Задача 60785

Темы:   [ Теорема Эйлера ]
[ Произведения и факториалы ]
Сложность: 4-
Классы: 9,10,11

Докажите, что при любом нечётном n число  2n! – 1  делится на n.

Прислать комментарий     Решение

Задача 60788

 [Усиление теоремы Эйлера]
Тема:   [ Теорема Эйлера ]
Сложность: 4-
Классы: 10,11

  – разложение натурального числа m на простые множители. Обозначим  
Докажите, что  aλ(m) ≡ 1 (mod m)  для любого целого числа a, взаимно простого с m.

Прислать комментарий     Решение

Задача 60802

Темы:   [ Арифметика остатков (прочее) ]
[ Количество и сумма делителей числа ]
Сложность: 4-
Классы: 9,10,11

Докажите, что если  n > 6  – чётное совершенное число, то его цифровой корень (см. задачу 60794) равен 1.

Прислать комментарий     Решение

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 606]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .