ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 606]      



Задача 60687

Темы:   [ Арифметика остатков (прочее) ]
[ Десятичная система счисления ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 9,10,11

а) Докажите, что квадрат целого числа не может оканчиваться четырьмя одинаковыми цифрами, отличными от 0.
б) Какими тремя цифрами может оканчиваться целое число, квадрат которого оканчивается тремя одинаковыми цифрами, отличными от 0?

Прислать комментарий     Решение

Задача 60709

Темы:   [ Арифметика остатков (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4-
Классы: 9,10,11

Докажите, что число  1k + 2k + ... + 12k  делится на 13 для  k = 1, 2, ..., 11.

Прислать комментарий     Решение

Задача 60715

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 9,10,11

Решите сравнения:
  а)  8x ≡ 3 (mod 13);
  б)  17x ≡ 2 (mod 37);
  в)  7x ≡ 2 (mod 11);
  г)  80x ≡ 17 (mod 169).

Прислать комментарий     Решение

Задача 60724

Темы:   [ Арифметика остатков (прочее) ]
[ Уравнения в целых числах ]
Сложность: 4-
Классы: 9,10,11

Докажите, что следующие уравнения не имеют решений в целых числах:
  а)  x² + y² = 2003;
  б)  12x + 5 = y²;
  в)   – x² + 7y³ + 6 = 0;
  г)  x² + y² + z² = 1999;
  д)  15x² – 7y² = 9;
  е)  x² – 5y + 3 = 0;
  ж)   
  з)  8x³ – 13y³ = 17.

Прислать комментарий     Решение

Задача 60741

Темы:   [ Малая теорема Ферма ]
[ Индукция (прочее) ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 4-
Классы: 9,10,11

С помощью индукции докажите следующее утверждение, эквивалентное малой теореме Ферма: если p – простое число, то для любого натурального a справедливо сравнение  ap ≡ a (mod p).

Прислать комментарий     Решение

Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 606]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .