ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Ссылки по теме:
Статья Н. Виленкина "Сравнения и классы вычетов" Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 606]
Дано n чисел, x1, x2, ..., xn, при этом xk = ±1. Доказать, что если x1x2 + x2x3 + ... + xnx1 = 0, то n делится на 4.
Докажите, что последние цифры чисел nn (n – натуральное) образуют периодическую последовательность.
Докажите, что можно разбить все множество натуральных чисел на 100 непустых подмножеств так, чтобы в любой тройке a, b, c, для которой a + 99b = c, нашлись два числа из одного подмножества.
Найдите все такие пары простых чисел p и q, что p³ – q5 = (p + q)².
Можно ли расставить по кругу числа 1, 2, ..., 60 в таком порядке, чтобы сумма каждых двух чисел, между которыми находится одно число, делилась на 2, сумма каждых двух чисел, между которыми находятся два числа, делилась на 3, сумма каждых двух чисел, между которыми находятся шесть чисел, делилась на 7?
Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 606] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |