ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 106 107 108 109 110 111 112 >> [Всего задач: 606]      



Задача 60779

 [Теорема Эйлера]
Темы:   [ Теорема Эйлера ]
[ Малая теорема Ферма ]
[ Арифметика остатков (прочее) ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 4
Классы: 9,10,11

Теорема Эйлера. Пусть  m ≥ 1  и  (a, m) = 1.  Тогда  aφ(m) ≡ 1 (mod m).
Докажите теорему Эйлера с помощью малой теоремы Ферма
  а) в случае, когда  m = pn;
  б) в общем случае.

Прислать комментарий     Решение

Задача 60993

Темы:   [ Рекуррентные соотношения (прочее) ]
[ НОД и НОК. Взаимная простота ]
[ Алгоритм Евклида ]
Сложность: 4
Классы: 9,10,11

Последовательность a0, a1, a2, ... задана условиями  a0 = 0,  an+1 = P(an)  (n ≥ 0),  где P(x) – многочлен с целыми коэффициентами,  P(x) > 0  при  x ≥ 0.
Докажите, что для любых натуральных m и k  (am, ak) = a(m, k).

Прислать комментарий     Решение

Задача 64353

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Произведения и факториалы ]
[ Малая теорема Ферма ]
[ Доказательство от противного ]
Сложность: 4
Классы: 9,10,11

Найдите все такие натуральные k, что произведение первых k простых чисел, уменьшенное на 1, является точной степенью натурального числа (большей чем первая).

Прислать комментарий     Решение

Задача 65711

Темы:   [ Таблицы и турниры (прочее) ]
[ Раскраски ]
[ Деление с остатком ]
Сложность: 4
Классы: 9,10,11

В белой таблице 2016×2016 некоторые клетки окрасили чёрным. Назовём натуральное число k удачным, если  k ≤ 2016,  и в каждом из клетчатых квадратов со стороной k, расположенных в таблице, окрашено ровно k клеток. (Например, если все клетки чёрные, то удачным является только число 1.) Какое наибольшее количество чисел могут быть удачными?
Прислать комментарий     Решение


Задача 78037

Темы:   [ Простые числа и их свойства ]
[ Арифметическая прогрессия ]
[ Деление с остатком ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 8,9,10

p простых чисел a1, a2, ..., ap образуют возрастающую арифметическую прогрессию и  a1 > p.
Доказать, что если p – простое число, то разность прогрессии делится на p.

Прислать комментарий     Решение

Страница: << 106 107 108 109 110 111 112 >> [Всего задач: 606]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .