ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 123]      



Задача 79450

Темы:   [ Раскраски ]
[ Примеры и контрпримеры. Конструкции ]
[ Степень вершины ]
Сложность: 3+
Классы: 8,9,10

Каждые две из шести ЭВМ соединены своим проводом. Укажите, как раскрасить каждый из этих проводов в один из пяти цветов так, чтобы из каждой ЭВМ выходило пять проводов разного цвета.

Прислать комментарий     Решение

Задача 116993

Темы:   [ Шахматная раскраска ]
[ Подсчет двумя способами ]
[ Степень вершины ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Куб с ребром n составлен из белых и чёрных кубиков с ребром 1 таким образом, что каждый белый кубик имеет общую грань ровно с тремя чёрными, а каждый чёрный – ровно с тремя белыми. При каких n это возможно?

Прислать комментарий     Решение

Задача 79528

Темы:   [ Связность и разложение на связные компоненты ]
[ Раскраски ]
[ Степень вершины ]
Сложность: 4-
Классы: 7,8,9

20 телефонов соединены проводами так, что каждый провод соединяет два телефона, каждая пара телефонов соединена не более чем одним проводом и от каждого телефона отходит не более двух проводов. Нужно закрасить провода (каждый провод целиком одной краской) так, чтобы от каждого телефона отходили провода разных цветов. Какого наименьшего числа красок достаточно для такой закраски?

Прислать комментарий     Решение

Задача 98544

Темы:   [ Числовые таблицы и их свойства ]
[ Ориентированные графы ]
[ Степень вершины ]
Сложность: 4-
Классы: 8,9

В каждой клетке таблицы  (n–2)×n  (n > 2)  записано целое число от 1 до n, причём в каждой строке все числа различны и в каждом столбце все числа различны. Докажите, что эту таблицу можно дополнить до квадрата n×n, записав в каждую новую клетку какое-нибудь целое число от 1 до n так, чтобы по-прежнему в каждой строке и в каждом столбце числа были различны.

Прислать комментарий     Решение

Задача 30823

Темы:   [ Ориентированные графы ]
[ Обход графов ]
[ Степень вершины ]
Сложность: 4
Классы: 8,9

В связном графе степени всех вершин чётны. Докажите, что на рёбрах этого графа можно расставить стрелки так, чтобы выполнялись следующие условия:
  а) двигаясь по стрелкам, можно добраться от каждой вершины до любой другой;
  б) для каждой вершины числа входящих и выходящих рёбер равны.

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 123]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .