ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 98]      



Задача 61216

Темы:   [ Тригонометрия (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 3-
Классы: 9,10

При каких целых значениях n функция

y = cos nx . sin$\displaystyle {\dfrac{5}{n}}$x

имеет период 3$ \pi$?

Прислать комментарий     Решение

Задача 66596

Темы:   [ Тригонометрия (прочее) ]
[ Функции. Непрерывность (прочее) ]
Сложность: 3
Классы: 10,11

Существует ли функция $f$, определенная на отрезке $[-1;1]$, которая при всех действительных $x$ удовлетворяет равенству $$ 2f(\cos x)=f(\sin x)+\sin x?$$
Прислать комментарий     Решение


Задача 67321

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Функции. Непрерывность (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Существует ли на координатной плоскости точка, относительно которой симметричен график функции $f(x)=\frac{1}{2^x+1}$?
Прислать комментарий     Решение


Задача 61304

Темы:   [ Предел последовательности, сходимость ]
[ Непрерывные функции (общие свойства) ]
Сложность: 3
Классы: 10,11

Метод итераций. Для того, чтобы приближенно решить уравнение, допускающее запись f (x) = x, применяется метод итераций. Сначала выбирается некоторое число x0, а затем строится последовательность {xn} по правилу xn + 1 = f (xn) (n $ \geqslant$ 0). Докажите, что если эта последовательность имеет предел x* = $ \lim\limits_{n\to\infty}^{}$xn, и функция f (x) непрерывна, то этот предел является корнем исходного уравнения: f (x*) = x*.

Прислать комментарий     Решение

Задача 64548

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Монотонность, ограниченность ]
Сложность: 3+

Найдите наибольшее значение выражения  a + b + c + d – ab – bc – cd – da,  если каждое из чисел a, b, c и d принадлежит отрезку  [0, 1].

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 98]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .