ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 239]      



Задача 53384

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3-
Классы: 8,9

В равнобедренном треугольнике ABC высоты AD и CE, опущенные на боковые стороны, образуют угол AMC, равный 48°. Найдите углы треугольника ABC.

Прислать комментарий     Решение

Задача 53394

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Углы между биссектрисами ]
Сложность: 3-
Классы: 8,9

В треугольнике известны углы A, B, C. Найдите углы шести треугольников, на которые данный треугольник разбивается его биссектрисами.

Прислать комментарий     Решение

Задача 53437

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3-
Классы: 8,9

Угол при основании BC равнобедренного треугольника ABC вдвое больше угла при вершине, BD – биссектриса треугольника. Докажите, что  AD = BC.

Прислать комментарий     Решение

Задача 53445

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Взаимное расположение высот, медиан, биссектрис и проч. ]
Сложность: 3-
Классы: 8,9

Два угла треугольника равны 10° и 70°. Найдите угол между высотой и биссектрисой, проведёнными из вершины третьего угла треугольника.

Прислать комментарий     Решение

Задача 53449

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Углы между биссектрисами ]
[ Конкуррентность высот. Углы между высотами. ]
Сложность: 3-
Классы: 8,9

Высоты остроугольного треугольника ABC, проведённые из вершин A и B, пересекаются в точке H, причём  ∠AHB = 120°,  а биссектрисы, проведённые из вершин B и C, – в точке K, причём  ∠BKC = 130°.  Найдите угол ABC.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 239]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .