ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 239]      



Задача 108680

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вспомогательные равные треугольники ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Дан равносторонний треугольник ABC. Сторона BC разделена на три равные части точками K и L, а точка M делит сторону AC в отношении  1 : 2,  считая от вершины A. Докажите, что сумма углов AKM и ALM равна 30°.

Прислать комментарий     Решение

Задача 115337

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Средняя линия треугольника ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

На стороне AC треугольника ABC отмечены точки D и E, а на отрезке BE – точка F. Оказалось, что  AC = BD,  2∠ACF = ∠ADB,  2∠CAF = ∠CDB.
Докажите, что  AD = CE.

Прислать комментарий     Решение

Задача 115893

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9,10,11

Из вершины B треугольника ABC опущен перпендикуляр BM на биссектрису угла C. Пусть K – точка касания вписанной окружности со стороной BC.
Найдите угол MKB, если известно, что  ∠BAC = α.

Прислать комментарий     Решение

Задача 66404

Темы:   [ Прямые, касающиеся окружностей ]
[ Вневписанные окружности ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

На продолжениях сторон CA и AB треугольника ABC за точки A и B соответственно отложены отрезки AE = BC и BF = AC. Окружность касается отрезка BF в точке N, стороны BC и продолжения стороны AC за точку C. Точка M – середина отрезка EF. Докажите, что прямая MN параллельна биссектрисе угла A.
Прислать комментарий     Решение


Задача 54630

Темы:   [ Построения (прочее) ]
[ Средняя линия трапеции ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

На одной из сторон прямого угла даны точки A и B (точка A расположена между вершиной угла и точкой B).
С помощью циркуля и линейки постройте на другой стороне такую точку X, чтобы  ∠AXB = 2∠ABX.

Прислать комментарий     Решение

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 239]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .