Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 994]
Докажите, что отношение периметров подобных треугольников равно коэффициенту подобия.
Концы отрезков AB и CD перемещаются по сторонам данного угла, причем прямые AB и CD перемещаются параллельно; M – точка пересечения отрезков AB и CD. Докажите, что величина
остается постоянной.
В треугольнике ABC проведены высоты BB1 и CC1. Докажите, что
а) касательная в точке A к описанной окружности параллельна прямой B1C1;
б) B1C1 ⊥ OA, где O – центр описанной окружности.
В треугольнике ABC из произвольной точки D на стороне AB
проведены две прямые, параллельные сторонам AC и BC, пересекающие BC и AC соответственно в точках F и G. Доказать, что сумма длин описанных окружностей треугольников ADG и BDF равна длине описанной окружности треугольника ABC.
Площадь трапеции ABCD равна 405. Диагонали пересекаются в точке O, отрезки, соединяющие середину P основания AD с вершинами B и C, пересекаются с диагоналями трапеции в точках M и N. Найдите площадь треугольника MON, если одно из оснований трапеции вдвое больше другого.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 994]