Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 290]
|
|
Сложность: 4- Классы: 10,11
|
В равностороннем треугольнике ABC на стороне AB взята точка D так, что AD = AB/n.
Докажите,что сумма n – 1 углов, под которыми виден отрезок AD из точек, делящих сторону BC на n равных частей, равна 30°:
а) при n = 3;
б) при произвольном n.
|
|
Сложность: 4- Классы: 8,9,10
|
Точки A1, B1, C1 – середины сторон правильного треугольника ABC. Три параллельные прямые, проходящие через A1, B1, C1, пересекают, соответственно, прямые B1C1, C1A1, A1B1 в точках A2, B2, C2. Доказать, что прямые AA2, BB2, CC2 пересекаются в одной точке, лежащей на описанной окружности треугольника ABC.
|
|
Сложность: 4- Классы: 7,8,9
|
В треугольнике ABC угол A равен 120°, точка D лежит на биссектрисе угла A, и AD = AB + AC. Докажите, что треугольник DBC – равносторонний.
На дуге AC описанной окружности правильного треугольника ABC взята точка M, отличная от C, P – середина этой дуги.
Пусть N – середина хорды BM, K – основание перпендикуляра, опущенного из точки P на MC. Докажите, что треугольник ANK правильный.
|
|
Сложность: 4- Классы: 7,8,9
|
Дан треугольник ABC с попарно различными сторонами. На его сторонах построены внешним образом правильные треугольники ABC1, BCA1 и CAB1. Докажите, что треугольник
A1B1C1 не может быть правильным.
Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 290]