ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Пусть числа a и b определены равенством a/b = [a0; a1, a2, ..., an]. Докажите, что уравнение ax – by = 1 c неизвестными x и y имеет решением одну из пар (Qn–1, Pn–1) или (– Qn–1, – Pn–1), где Pn–1/Qn–1 – (n–1)-я подходящая дробь. От чего зависит, какая именно из пар является решением? ![]() ![]() Докажите, что длину биссектрисы la можно вычислить по следующим формулам: а) la = б) la = 2bc cos( в) la = 2R sin г) la = 4p sin( ![]() ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 45]
Докажите,что площадь любого четырёхугольника ABCD не
превосходит
Докажите, что в прямоугольном треугольнике биссектриса, проведённая из вершины прямого угла, не превосходит половины проекции гипотенузы на прямую, перпендикулярную этой биссектрисе.
Внутри стороны BC правильного треугольника ABC взята точка D. Прямая, проходящая через точку C и параллельная AD, пересекает прямую AB в точке E. Докажите, что
Точка M лежит на стороне AC остроугольного треугольника ABC. Вокруг треугольников ABM и CBM описываются окружности. При каком положении точки M площадь общей части ограниченных ими кругов будет наименьшей?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 45] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |