ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Квадрат разрезали на конечное число прямоугольников. Обязательно ли найдётся отрезок, соединяющий центры (точки пересечения диагоналей) двух прямоугольников, не имеющий общих точек ни с какими другими прямоугольниками, кроме этих двух?

Вниз   Решение


Докажите, что при любых x, y, z выполнено неравенство: x4 + y4 + z² + 1 ≥ 2x(xy² – x + z + 1).

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 80]      



Задача 109837

Темы:   [ Разбиения на пары и группы; биекции ]
[ Индукция в геометрии ]
[ Процессы и операции ]
Сложность: 5
Классы: 8,9,10

За круглым столом сидят 100 представителей 50 стран, по двое от каждой страны. Докажите, что их можно разбить на две группы таким образом, что в каждой группе будет по одному представителю от каждой страны, и каждый человек находился в одной группе не более чем с одним своим соседом.
Прислать комментарий     Решение


Задача 116053

Темы:   [ Разрезания (прочее) ]
[ Индукция в геометрии ]
Сложность: 5
Классы: 10,11

Квадрат ABCD разрезан на одинаковые прямоугольники с целыми длинами сторон. Фигура F является объединением всех прямоугольников, имеющих общие точки с диагональю AC. Докажите, что AC делит площадь фигуры F пополам.

Прислать комментарий     Решение

Задача 109568

Темы:   [ Системы точек ]
[ Индукция в геометрии ]
[ Полуинварианты ]
Сложность: 5+
Классы: 9,10,11

Автор: Мусин О.

На прямой отмечены n различных синих точек и n различных красных точек. Докажите, что сумма попарных расстояний между точками одного цвета не превосходит суммы попарных расстояний между точками разного цвета.
Прислать комментарий     Решение


Задача 97806

Темы:   [ Комбинаторика (прочее) ]
[ Индукция в геометрии ]
[ Алгоритм Евклида ]
[ Соображения непрерывности ]
Сложность: 6
Классы: 9,10,11

k вершин правильного n-угольника закрашены. Закраска называется почти равномерной, если для любого натурального m верно следующее условие: если M1 – множество m расположенных подряд вершин и M2 – другое такое множество, то количество закрашенных вершин в M1 отличается от количества закрашенных вершин в M2 не больше чем на 1. Доказать, что для любых натуральных n и  kn  почти равномерная закраска существует и что она единственна с точностью до поворотов закрашенного множества.

Прислать комментарий     Решение

Задача 66027

Темы:   [ Выпуклые многоугольники ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Индукция в геометрии ]
Сложность: 4-
Классы: 9,10,11

Выпуклый многоугольник разрезан непересекающимися диагоналями на равнобедренные треугольники.
Докажите, что в этом многоугольнике найдутся две равные стороны.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 80]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .