Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 328]
Сумма положительных чисел x1, x2, ..., xn равна ½. Докажите, что
|
|
Сложность: 4 Классы: 9,10,11
|
На плоскости нарисовано несколько точек, некоторые пары точек соединены отрезками. Известно, что из каждой точки выходит не более k отрезков. Докажите, что точки можно покрасить в k + 1 цвет таким образом, чтобы каждые две точки, соединенные отрезком, были покрашены в разные цвета.
[Числа-автоморфы]
|
|
Сложность: 4 Классы: 9,10,11
|
а) Трёхзначное число 625 обладает своеобразным свойством самовоспроизводимости, как то: 625² = 390625. БикЮ
Сколько четырёхзначных чисел удовлетворяют уравнению x² ≡ x (mod 10000)?
б) Докажите, что при любом k существует ровно четыре набора из k
цифр – 0...0, 0...01 и ещё два, оканчивающиеся пятеркой и шестёркой, – обладающие таким свойством: если натуральное число оканчивается одним из этих наборов цифр, то его квадрат оканчивается тем же набором цифр.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Для каких натуральных
n в выражении
±12±22±32±...±n2
можно так расставить знаки + и
-, что в результате получится 0?
|
|
Сложность: 4 Классы: 8,9,10,11
|
В автобусе n мест, и все билеты проданы n пассажирам. Первым в автобус заходит Рассеянный Учёный и, не посмотрев на билет, занимает первое попавшееся место. Далее пассажиры входят по одному. Если вошедший видит, что его место свободно, он занимает свое место. Если же место занято, то вошедший занимает первое попавшееся свободное место. Найдите вероятность того, что пассажир, вошедший последним, займет место согласно своему билету?
Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 328]