Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 68]
В выпуклом многоугольнике из каждой вершины опущены перпендикуляры на все не смежные с ней стороны. Может ли оказаться так, что основание каждого перпендикуляра попало на продолжение стороны, а не на саму сторону?
|
|
Сложность: 4- Классы: 8,9,10,11
|
На плоскости отмечено несколько точек, причём не все эти точки лежат на одной прямой. Вокруг каждого треугольника с вершинами в отмеченных точках описана окружность. Могут ли центры всех этих окружностей оказаться отмеченными точками?
|
|
Сложность: 4- Классы: 8,9,10
|
Квадрат разрезали на конечное число прямоугольников. Обязательно ли найдётся отрезок, соединяющий центры (точки пересечения диагоналей) двух прямоугольников, не имеющий общих точек ни с какими другими прямоугольниками, кроме этих двух?
|
|
Сложность: 4 Классы: 8,9,10
|
В круге провели несколько (конечное число) различных хорд так,
что каждая из них проходит через
середину какой-либо другой из проведённых хорд.
Докажите, что все эти хорды являются диаметрами
круга.
|
|
Сложность: 4 Классы: 8,9,10
|
В некотором государстве города соединены дорогами. Длина каждой дороги меньше 500 км, и из каждого города в любой другой можно попасть, проехав по дорогам меньше 500 км. Когда одна дорога оказалась закрытой на ремонт, выяснилось, что из каждого города можно проехать по оставшимся дорогам в любой другой. Доказать, что при этом можно проехать меньше 1500 км.
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 68]