ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 222]      



Задача 97836

Темы:   [ Полуинварианты ]
[ Перестановки и подстановки ]
[ Процессы и операции ]
[ Принцип крайнего (прочее) ]
Сложность: 5
Классы: 9,10,11

Автор: Ильичев В.

По одной стороне бесконечного коридора расположено бесконечное количество комнат, занумерованных числами от минус бесконечности до плюс бесконечности. В комнатах живут 9 пианистов (в одной комнате могут жить несколько пианистов), кроме того, в каждой комнате находится по роялю. Каждый день какие-то два пианиста, живущие в соседних комнатах (k-й и (k+1)-й), приходят к выводу, что они мешают друг другу, и переселяются соответственно в (k–1)-ю и (k+2)-ю комнаты. Докажите, что через конечное число дней эти переселения прекратятся. (Пианисты, живущие в одной комнате, друг другу не мешают.)

Прислать комментарий     Решение

Задача 109730

Темы:   [ НОД и НОК. Взаимная простота ]
[ Процессы и операции ]
[ Деление с остатком ]
[ Принцип крайнего (прочее) ]
Сложность: 5
Классы: 8,9,10

По окружности расставлено 100 натуральных чисел, взаимно простых в совокупности. Разрешается прибавлять к любому числу наибольший общий делитель его соседей. Докажите, что при помощи таких операций можно сделать все числа попарно взаимно простыми.

Прислать комментарий     Решение

Задача 111833

Темы:   [ Связность и разложение на связные компоненты ]
[ Степень вершины ]
[ Перестройки ]
[ Принцип крайнего (прочее) ]
Сложность: 5
Классы: 9,10,11

В стране есть N городов. Некоторые пары из них соединены беспосадочными двусторонними авиалиниями. Оказалось, что для любого k  (2 ≤ k ≤ N)  при любом выборе k городов количество авиалиний между этими городами не будет превосходить  2k – 2.  Докажите, что все авиалинии можно распределить между двумя авиакомпаниями так, что не будет замкнутого авиамаршрута, в котором все авиалинии принадлежат одной компании.

Прислать комментарий     Решение

Задача 34902

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Обыкновенные дроби ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Делимость чисел. Общие свойства ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 8,9,10

Докажите, что сумма всех чисел вида 1/mn, где m и n – натуральные числа,  1 < m < n < 1986,  не является целым числом.

Прислать комментарий     Решение

Задача 97919

Темы:   [ Числовые таблицы и их свойства ]
[ Правило произведения ]
[ Доказательство от противного ]
[ Принцип Дирихле (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 4
Классы: 8,9,10

Автор: Анджанс А.

Клетки шахматной доски 8×8 как-то занумерованы числами от 1 до 32, причём каждое число использовано дважды. Докажите, что можно так выбрать 32 клетки, занумерованные разными числами, что на каждой вертикали и на каждой горизонтали найдётся хотя бы по одной выбранной клетке.

Прислать комментарий     Решение

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 222]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .