Страница:
<< 39 40 41 42 43
44 45 >> [Всего задач: 222]
|
|
Сложность: 5 Классы: 9,10,11
|
По одной стороне бесконечного коридора расположено бесконечное количество
комнат, занумерованных числами от минус бесконечности до плюс бесконечности. В
комнатах живут 9 пианистов (в одной комнате могут жить несколько пианистов),
кроме того, в каждой комнате находится по роялю. Каждый день какие-то два
пианиста, живущие в соседних комнатах (k-й и (k+1)-й), приходят к выводу, что они мешают друг другу, и переселяются соответственно в (k–1)-ю и (k+2)-ю комнаты. Докажите, что через конечное число дней эти переселения прекратятся. (Пианисты, живущие в одной комнате, друг другу не мешают.)
|
|
Сложность: 5 Классы: 8,9,10
|
По окружности расставлено 100 натуральных чисел, взаимно простых в совокупности. Разрешается прибавлять к любому числу наибольший общий делитель его соседей. Докажите, что при помощи таких операций можно сделать все числа попарно взаимно простыми.
|
|
Сложность: 5 Классы: 9,10,11
|
В стране есть N городов. Некоторые пары из них соединены беспосадочными двусторонними авиалиниями. Оказалось, что для любого k (2 ≤ k ≤ N) при любом выборе k городов количество авиалиний между этими городами не будет превосходить 2k – 2. Докажите, что все авиалинии можно распределить между двумя авиакомпаниями так, что
не будет замкнутого авиамаршрута, в котором все авиалинии принадлежат одной компании.
|
|
Сложность: 4- Классы: 8,9,10
|
Докажите, что сумма всех чисел вида 1/mn, где m и n – натуральные числа, 1 < m < n < 1986, не является целым числом.
|
|
Сложность: 4 Классы: 8,9,10
|
Клетки шахматной доски 8×8 как-то занумерованы числами от 1 до 32, причём каждое число использовано дважды. Докажите, что можно так выбрать 32 клетки, занумерованные разными числами, что на каждой вертикали и на каждой горизонтали найдётся хотя бы по одной выбранной клетке.
Страница:
<< 39 40 41 42 43
44 45 >> [Всего задач: 222]