ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

На столе стоят 2004 коробочки, в каждой из которых лежит по одному шарику. Известно, что некоторые из шариков– белые, и их количество четно. Разрешается указать на любые две коробочки и спросить, есть ли в них хотя бы один белый шарик. За какое наименьшее количество вопросов можно гарантированно определить какие-нибудь две коробочки, в которых лежат белые шарики?

Вниз   Решение


Автор: Фольклор

Доказать, что среди 18 последовательных трёхзначных чисел найдётся хотя бы одно, которое делится на сумму своих цифр.

ВверхВниз   Решение


Каждую грань кубика разбили на четыре равных квадрата и раскрасили эти квадраты в три цвета так, чтобы квадраты, имеющие общую сторону, были покрашены в разные цвета. Докажите, что в каждый цвет покрашено по 8 квадратиков.

ВверхВниз   Решение


В клетки таблицы 100×100 записаны ненулевые цифры. Оказалось, что все 100 стозначных чисел, записанных по горизонтали, делятся на 11. Могло ли так оказаться, что ровно 99 стозначных чисел, записанных по вертикали, также делятся на 11?

ВверхВниз   Решение


Автор: Храмцов Д.

Пусть многочлен  P(x) = anxn + an–1xn–1 + ... + a0  имеет хотя бы один действительный корень и  a0 ≠ 0.  Докажите, что, последовательно вычеркивая в некотором порядке одночлены в записи P(x), можно получить из него число a0 так, чтобы каждый промежуточный многочлен также имел хотя бы один действительный корень.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 149]      



Задача 35660

Тема:   [ Разные задачи на разрезания ]
Сложность: 2+
Классы: 6,7,8

Разрежьте фигуру, полученную из прямоугольника 4×5 вырезанием четырёх угловых клеток 1×1, на три части, не являющиеся квадратами, так, чтобы из этих частей можно было сложить квадрат.

Прислать комментарий     Решение

Задача 78028

Темы:   [ Разные задачи на разрезания ]
[ Простые числа и их свойства ]
Сложность: 2+
Классы: 7,8,9

Найти все прямоугольники, которые можно разрезать на 13 равных квадратов.

Прислать комментарий     Решение

Задача 103804

Темы:   [ Разные задачи на разрезания ]
[ Пятиугольники ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 2+
Классы: 7,8

Автор: Ботин Д.А.

Можно ли разрезать на четыре остроугольных треугольника
  а) какой-нибудь выпуклый пятиугольник,
  б) правильный пятиугольник.

Прислать комментарий     Решение

Задача 104064

Тема:   [ Разные задачи на разрезания ]
Сложность: 2+
Классы: 5,6,7

Разрежьте изображённый на рисунке пятиугольник на две одинаковые (совпадающие при наложении) части.

Прислать комментарий     Решение

Задача 115487

Тема:   [ Разные задачи на разрезания ]
Сложность: 2+
Классы: 5,6,7

Пете и Коле выдали две одинаковые фигуры, вырезанные из клетчатой бумаги. Известно, что в каждой фигуре меньше, чем 16 клеток. Петя разрезал свою фигуру на части из четырех клеток (см. рисунок слева), а Коля разрезал свою фигуру на уголки из трех клеток (см. рисунок справа). Приведите пример фигуры, которую могли выдать мальчикам. Покажите, как эту фигуру разрезал на части Петя, и как ее разрезал Коля.


Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .