ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На столе стоят 2004 коробочки, в каждой из которых лежит по одному шарику. Известно, что некоторые из шариков– белые, и их количество четно. Разрешается указать на любые две коробочки и спросить, есть ли в них хотя бы один белый шарик. За какое наименьшее количество вопросов можно гарантированно определить какие-нибудь две коробочки, в которых лежат белые шарики? ![]() ![]() Доказать, что среди 18 последовательных трёхзначных чисел найдётся хотя бы одно, которое делится на сумму своих цифр. ![]() ![]() ![]() Каждую грань кубика разбили на четыре равных квадрата и раскрасили эти квадраты в три цвета так, чтобы квадраты, имеющие общую сторону, были покрашены в разные цвета. Докажите, что в каждый цвет покрашено по 8 квадратиков. ![]() ![]() ![]() В клетки таблицы 100×100 записаны ненулевые цифры. Оказалось, что все 100 стозначных чисел, записанных по горизонтали, делятся на 11. Могло ли так оказаться, что ровно 99 стозначных чисел, записанных по вертикали, также делятся на 11? ![]() ![]() ![]() Пусть многочлен P(x) = anxn + an–1xn–1 + ... + a0 имеет хотя бы один действительный корень и a0 ≠ 0. Докажите, что, последовательно вычеркивая в некотором порядке одночлены в записи P(x), можно получить из него число a0 так, чтобы каждый промежуточный многочлен также имел хотя бы один действительный корень. ![]() ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 149]
Разрежьте фигуру, полученную из прямоугольника 4×5 вырезанием четырёх угловых клеток 1×1, на три части, не являющиеся квадратами, так, чтобы из этих частей можно было сложить квадрат.
Найти все прямоугольники, которые можно разрезать на 13 равных квадратов.
Можно ли разрезать на четыре остроугольных треугольника
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 149] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |