Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 149]
Квадрат разрезан на несколько (больше одного) выпуклых многоугольников с попарно различным числом сторон.
Докажите, что среди них есть треугольник.
|
|
Сложность: 4+ Классы: 10,11
|
Внутри прямоугольного листа бумаги вырезали n прямоугольных дыр со сторонами, параллельными краям листа. На какое наименьшее число прямоугольных частей можно гарантированно разрезать этот дырявый лист? (Дыры не перекрываются и не соприкасаются.)
Школьник хочет вырезать из квадрата размером
2
n×2
n наибольшее
количество прямоугольников размером
1×(
n + 1). Найти это количество для
каждого натурального значения
n.
Можно ли невыпуклый четырехугольник разрезать двумя прямыми на 6
частей?
|
|
Сложность: 5- Классы: 6,7,8,9,10,11
|
Петя разрезал прямоугольный лист бумаги по прямой. Затем он разрезал по прямой один из получившихся кусков. Затем он проделал то же самое с одним из трёх получившихся кусков и т.д. Докажите, что после достаточного количества разрезаний можно будет выбрать среди получившихся кусков 100 многоугольников с одинаковым числом вершин (например, 100 треугольников или 100 четырёхугольников и т.д.).
Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 149]