ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 1024]
Прямые PA и PB касаются окружности с центром O (A и B — точки касания). Проведена третья касательная к окружности, пересекающая прямые PA и PB в точках X и Y. Докажите, что величина угла XOY не зависит от выбора третьей касательной.
Две окружности касаются друг друга внешним образом в точке C. Радиусы окружностей равны 2 и 7. Общая касательная к обеим окружностям, проведенная через точку C, пересекается с другой их общей касательной в точке D. Найдите расстояние от центра меньшей окружности до точки D.
В прямоугольном треугольнике гипотенуза равна c. Центры трёх
окружностей радиуса
На плоскости даны две окружности радиусов 12 и 7 с центрами
в точках O1 и O2, касающиеся некоторой прямой в точках
M1 и M2 и лежащие по одну сторону от этой прямой. Отношение
длины отрезка
M1M2 к длине отрезка
O1O2 равно
На плоскости даны две окружности радиусов 8 и 6 с центрами в
точках S1 и S2, касающиеся некоторой прямой в точках
A1 и A2 и лежащие по одну сторону от этой прямой.
Отношение отрезка
S1S2 к отрезку
A1A2 равно
Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 1024] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |