Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 49]
Хорда окружности пересекает некоторый диаметр под углом, равным 30°, и делит его на отрезки, равные a и b. Найдите расстояние от центра окружности до этой хорды.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Внутри окружности расположен прямоугольник $ABCD$. Лучи $BA$ и $DA$ пересекают окружность в точках $A_1$ и $A_2$. Точка $A_0$ – середина хорды $A_1A_2$. Аналогично определяются точки $B_0$, $C_0$, $D_0$. Докажите, что отрезки $A_0C_0$ и $B_0D_0$ равны.
Окружность с центром, расположенным внутри прямого угла, касается одной стороны угла, пересекает другую сторону в точках A и B и биссектрису угла в точках C и D. AB =
, CD =
. Найдите радиус окружности.
На плоскости дан прямой угол. Окружность с центром, расположенным вне этого угла, касается продолжения одной из его сторон, пересекает другую сторону в точках A и B и пересекает биссектрису этого угла в точках C и D. AB = 4
, CD = 2. Найдите радиус окружности.
На плоскости дан прямой угол. Окружность с центром, расположенным вне данного угла, касается биссектрисы прямого угла, пересекает одну из его сторон в точках A и B и продолжение другой стороны в точках C и D. AB =
, CD = 1. Найдите радиус окружности.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 49]