Страница: 1
2 3 4 >> [Всего задач: 16]
Хорда
AB разбивает окружность
S на две дуги.
Окружность
S1 касается хорды
AB в точке
M и одной из
дуг в точке
N. Докажите, что:
а) прямая
MN проходит через середину
P второй дуги;
б) длина касательной
PQ к окружности
S1 равна
PA.
Две окружности, вписанные в сегмент AB данной окружности, пересекаются в точках M и N. Докажите, что прямая MN проходит через середину C дополнительной дуги данного сегмента AB.
В прямоугольном секторе AOB проведена хорда AB и в образовавшийся сегмент вписан квадрат. Найдите отношение стороны квадрата к радиусу окружности, которая касается хорды AB, дуги AB и стороны квадрата, перпендикулярной хорде AB.
Из точки
D окружности
S опущен перпендикуляр
DC
на диаметр
AB. Окружность
S1 касается отрезка
CA
в точке
E, а также отрезка
CD и окружности
S. Докажите,
что
DE — биссектриса треугольника
ADC.
|
|
Сложность: 4+ Классы: 10,11
|
В сегмент, ограниченный хордой и дугой AB окружности, вписана окружность ω с центром I. Обозначим середину указанной дуги AB через M, а середину дополнительной дуги через N. Из точки N проведены две прямые, касающиеся ω в точках C и D. Противоположные стороны AD и BC четырёхугольника ABCD пересекаются в точке Y, а его диагонали пересекаются в точке X. Докажите, что точки X, Y, I и M лежат на одной прямой.
Страница: 1
2 3 4 >> [Всего задач: 16]