Страница:
<< 60 61 62 63
64 65 66 >> [Всего задач: 2247]
Докажите, что биссектрисы углов при боковой стороне трапеции пересекаются на средней линии.
В прямоугольнике ABCD точка M – середина стороны BC, N – середина стороны CD, P –; точка пересечения отрезков DM и BN.
Докажите, что угол ∠MAN = ∠BPM.
Около окружности описана равнобедренная трапеция. Боковая сторона трапеции равна a, отрезок, соединяющий точки касания боковых сторон с окружностью, равен b. Найдите диаметр окружности.
В окружность вписан четырёхугольник ABCD, диагонали которого
пересекаются в точке M. Известно, что AB = a, CD = b, ∠AMB = α.
Найдите радиус окружности.
Гипотенуза прямоугольного треугольника служит стороной квадрата, расположенного вне треугольника.
Найдите расстояние между вершиной прямого угла треугольника и центром квадрата, если сумма катетов треугольника равна d.
Страница:
<< 60 61 62 63
64 65 66 >> [Всего задач: 2247]