ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 2247]      



Задача 54109

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9

Через произвольную точку внутри квадрата проведены две взаимно перпендикулярные прямые, каждая из которых пересекает две противоположные стороны квадрата. Докажите, что отрезки этих прямых, заключённые внутри квадрата, равны.

Прислать комментарий     Решение

Задача 54113

Темы:   [ Признаки и свойства параллелограмма ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 3+
Классы: 8,9

Через точку, расположенную внутри треугольника, проведены прямые, параллельные сторонам треугольника. Эти прямые разбивают треугольник на три треугольника и три четырёхугольника. Пусть a, b и c – параллельные высоты трёх этих треугольников. Найдите параллельную им высоту исходного треугольника.

Прислать комментарий     Решение

Задача 54115

Темы:   [ Признаки и свойства параллелограмма ]
[ Конкуррентность высот. Углы между высотами. ]
Сложность: 3+
Классы: 8,9

Через каждую вершину параллеллограмма проведена прямая, перпендикулярная диагонали, не проходящей через эту вершину. Докажите, что диагонали четырёхугольника, образованного пересечениями четырёх проведённых прямых, перпендикулярны сторонам параллелограмма.

Прислать комментарий     Решение

Задача 54116

Темы:   [ Признаки и свойства параллелограмма ]
[ Медиана, проведенная к гипотенузе ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9

Сторона BC параллелограмма ABCD вдвое больше стороны CD, P – проекция вершины C на прямую AB, M – середина стороны AD.
Докажите, что  ∠DMP = 3∠APM.

Прислать комментарий     Решение

Задача 54148

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Средняя линия треугольника ]
[ Хорды и секущие (прочее) ]
Сложность: 3+
Классы: 8,9

Четырёхугольник ABCD, диагонали которого взаимно перпендикулярны, вписан в окружность с центром O. Найдите расстояние от точки O до стороны AB, если  CD = a.

Прислать комментарий     Решение

Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 2247]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .