Страница:
<< 64 65 66 67
68 69 70 >> [Всего задач: 2247]
Через произвольную точку внутри квадрата проведены две взаимно перпендикулярные прямые, каждая из которых пересекает две противоположные стороны квадрата. Докажите, что отрезки этих прямых, заключённые внутри квадрата, равны.
Через точку, расположенную внутри треугольника, проведены прямые, параллельные сторонам треугольника. Эти прямые разбивают треугольник на три треугольника и три четырёхугольника. Пусть a, b и c – параллельные высоты трёх этих треугольников. Найдите параллельную им высоту исходного треугольника.
Через каждую вершину параллеллограмма проведена прямая, перпендикулярная диагонали, не проходящей через эту вершину. Докажите, что диагонали четырёхугольника, образованного пересечениями четырёх проведённых прямых, перпендикулярны сторонам параллелограмма.
Сторона BC параллелограмма ABCD вдвое больше стороны CD, P – проекция вершины C на прямую AB, M – середина стороны AD.
Докажите, что ∠DMP = 3∠APM.
Четырёхугольник ABCD, диагонали которого взаимно перпендикулярны, вписан в окружность с центром O. Найдите расстояние от точки O до стороны AB, если CD = a.
Страница:
<< 64 65 66 67
68 69 70 >> [Всего задач: 2247]