ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 178 179 180 181 182 183 184 >> [Всего задач: 2247]      



Задача 58396

 [Неравенство Птолемея]
Темы:   [ Теорема Птолемея ]
[ Комплексные числа в геометрии ]
[ Инверсия помогает решить задачу ]
[ Шестиугольники ]
Сложность: 7-
Классы: 9,10,11

а) Докажите, что если A, B, C и D — произвольные точки плоскости, то AB . CD + BC . AD$ \ge$AC . BD (неравенство Птолемея).
б) Докажите, что если A1, A2, ...A6 — произвольные точки плоскости, то

\begin{multline*}
A_1A_4\cdot A_2A_5\cdot A_3A_6\le
A_1A_2\cdot A_3A_6\cdot A_...
...+A_2A_3\cdot A_4A_5\cdot A_1A_6+A_3A_4\cdot A_2A_5\cdot A_1A_6.
\end{multline*}


в) Докажите, что (нестрогое) неравенство Птолемея обращается в равенство тогда и только тогда, когда ABCD — (выпуклый) вписанный четырехугольник.
г) Докажите, что неравенство из задачи б) обращается в равенство тогда и только тогда, когда A1...A6 — вписанный шестиугольник.
Прислать комментарий     Решение

Задача 110755

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Свойства симметрий и осей симметрии ]
[ Биссектриса делит дугу пополам ]
[ Композиции движений. Теорема Шаля ]
[ Композиция центральных симметрий ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 7-
Классы: 9,10,11

Четырехугольник ABCD вписан в окружность с центром O . Точки C' , D' симметричны ортоцентрам треугольников ABD и ABC относительно O . Докажите, что если прямые BD и BD' симметричны относительно биссектрисы угла B , то прямые AC и AC' симметричны относительно биссектрисы угла A .
Прислать комментарий     Решение


Задача 76039

Темы:   [ Разные задачи на разрезания ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 2
Классы: 6,7

Разрежьте квадрат на 3 части, из которых можно сложить треугольник с 3 острыми углами и тремя различными сторонами.
Прислать комментарий     Решение


Задача 86509

Темы:   [ Подобные фигуры ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 2
Классы: 8,9

Являются ли подобными два прямоугольника: картина в рамке и картина без рамки, если ширина рамки всюду одинакова (см. рис.)?

Прислать комментарий     Решение

Задача 103790

Темы:   [ Наименьшая или наибольшая площадь (объем) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 2
Классы: 7

Прямоугольник составлен из шести квадратов (см. правый рисунок). Найдите сторону самого большого квадрата, если сторона самого маленького равна 1.

Прислать комментарий     Решение


Страница: << 178 179 180 181 182 183 184 >> [Всего задач: 2247]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .