Страница:
<< 27 28 29 30
31 32 33 >> [Всего задач: 993]
Вершины параллелограмма A1B1C1D1 лежат на сторонах параллелограмма ABCD (точка A1 лежит на стороне AB, точка B1 – на стороне BC и т.д.).
Докажите, что центры обоих параллелограммов совпадают.
От квадрата отрезан прямоугольный треугольник, сумма катетов которого равна стороне квадрата.
Докажите, что сумма трёх углов, под которыми видна из трёх оставшихся вершин его гипотенуза, равна 90°.
Найдите диагонали четырёхугольника, образованного биссектрисами внутренних углов прямоугольника со сторонами 1 и 3.
В выпуклом четырёхугольнике отрезки, соединяющие середины противоположных сторон, равны соответственно a и b и пересекаются под углом 60°.
Найдите диагонали четырёхугольника.
В прямоугольнике ABCD AB = 3, BD = 6 . На продолжении биссектрисы BL треугольника ABD взята точка N, причём точка L делит отрезок BN в отношении 10 : 3, считая от точки B. Что больше: BN или CL?
Страница:
<< 27 28 29 30
31 32 33 >> [Всего задач: 993]