Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 496]
|
|
Сложность: 3 Классы: 8,9,10
|
Треугольник
ABC вписан в окружность. Точка
D — середина дуги
AC, точки
K и
L выбраны на сторонах
AB и
CB соответственно так, что
KL параллельна
AC. Пусть
K' и
L' — точки пересечения прямых
DK и
DL соответственно с окружностью. Докажите, что вокруг четырехугольника
KLL'
K' можно описать окружность.
Биссектрисы двух углов вписанного четырёхугольника параллельны.
Докажите, что сумма квадратов двух сторон четырёхугольника равна сумме квадратов двух других сторон.
|
|
Сложность: 3 Классы: 8,9,10
|
Две окружности проходят через вершину угла и точку его биссектрисы. Докажите, что отрезки, высекаемые ими на сторонах угла, равны.
Диагонали вписанного четырёхугольника взаимно перпендикулярны.
Докажите, что расстояние от точки пересечения диагоналей до центра
описанной окружности равно расстоянию между серединами диагоналей.
Трапеция KLMN с основаниями LM и KN вписана в окружность,
центр которой лежит на основании KN. Диагональ LN трапеции равна
4, а угол MNK равен
60o. Найдите основание LM трапеции.
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 496]