ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 404]      



Задача 102321

Темы:   [ Теорема косинусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3
Классы: 8,9

В треугольнике ABC сторона AC равна 4, а сторона BC равна $ {\frac{8}{\sqrt{2}}}$. Найдите площадь треугольника ABC, если известно, что угол ABC равен 45o.
Прислать комментарий     Решение


Задача 54286

Темы:   [ Длины сторон, высот, медиан и биссектрис ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 3
Классы: 8,9

Найдите площадь треугольника, если две его стороны равны 35 и 14 см, а биссектриса угла между ними равна 12 см.

Прислать комментарий     Решение


Задача 55067

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Формула Герона ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9

Дан треугольник ABC, в котором AB = 6, BC = 7, AC = 5. Биссектриса угла C пересекает сторону AB в точке D. Найдите площадь треугольника ADC.

Прислать комментарий     Решение


Задача 102205

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Формула Герона ]
Сложность: 3
Классы: 8,9

Дан треугольник ABC со сторонами AB = 6, AC = 4, BC = 8. Точка D лежит на стороне AB, а точка E — на стороне AC, причём AD = 2, AE = 3. Найдите площадь треугольника ADE.
Прислать комментарий     Решение


Задача 102207

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Формула Герона ]
Сложность: 3
Классы: 8,9

Точки Q и R расположены соответственно на сторонах MN и MP треугольника MNP, причём MQ = 3, MR = 4. Найдите площадь треугольника MQR, если MN = 4, MP = 5, NP = 6.
Прислать комментарий     Решение


Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 404]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .