Страница:
<< 51 52 53 54
55 56 57 >> [Всего задач: 1547]
На сторонах треугольника
ABC внешним образом
построены подобные треугольники:
A1BC
B1CA
C1AB. Докажите, что точки пересечения медиан
треугольников
ABC и
A1B1C1 совпадают.
Середины сторон
BC и
B1C1 правильных треугольников
ABC
и
A1B1C1 совпадают (вершины обоих треугольников перечислены по
часовой стрелке). Найдите величину угла между прямыми
AA1 и
BB1,
а также отношение длин отрезков
AA1 и
BB1.
Треугольник
ABC при поворотной гомотетии переходит в треугольник
A1B1C1;
O — произвольная точка.
Пусть
A2 — вершина параллелограмма
OAA1A2; точки
B2
и
C2 определяются аналогично. Докажите, что
A2B2C2
ABC.
|
|
Сложность: 4 Классы: 8,9,10,11
|
По двум пересекающимся прямым с постоянными, но не равными скоростями движутся точки A и B.
Докажите, что существует такая точка P, что в любой момент времени AP : BP = k, где k – отношение скоростей.
Докажите, что центр поворотной гомотетии,
переводящей отрезок
AB в отрезок
A1B1, совпадает
с центром поворотной гомотетии, переводящей отрезок
AA1 в отрезок
BB1.
Страница:
<< 51 52 53 54
55 56 57 >> [Всего задач: 1547]