Страница:
<< 53 54 55 56
57 58 59 >> [Всего задач: 1547]
Докажите, что инверсия с центром в вершине
A
равнобедренного треугольника
ABC (
AB =
AC) и степенью
AB2
переводит основание
BC треугольника в дугу
BC
описанной окружности.
Даны четыре окружности, причем окружности
S1
и
S3 пересекаются с обеими окружностями
S2 и
S4. Докажите,
что если точки пересечения
S1 с
S2 и
S3 с
S4 лежат на одной
окружности или прямой, то и точки пересечения
S1 с
S4 и
S2
с
S3 лежат на одной окружности или прямой (рис.).
|
|
Сложность: 4 Классы: 8,9,10
|
Пусть M – середина хорды AB окружности с центром O. Точка K симметрична M относительно O, P – произвольная точка окружности. Перпендикуляр к AB в точке A и перпендикуляр к PK в точке P пересекаются в точке Q. Точка H – проекция P на AB. Докажите, что прямая QB делит отрезок PH пополам.
|
|
Сложность: 4 Классы: 9,10,11
|
Имеется бильярдный стол в виде многоугольника (не обязательно выпуклого), у которого все углы составляют целое число градусов, а угол A – в точности 1°. В вершинах находятся точечные лузы, попав в которые шар проваливается. Из вершины A вылетает точечный шар и движется внутри многоугольника, отражаясь от сторон по закону "угол падения равен углу отражения". Докажите, что он никогда не вернётся в вершину A.
|
|
Сложность: 4 Классы: 9,10,11
|
В треугольнике $ABC$, где $AB < BC$, биссектриса угла $C$ пересекает в точке $P$ прямую, параллельную $AC$ и проходящую через вершину $B$, а в точке $R$ – касательную из вершины $B$ к описанной окружности треугольника. Точка $R'$ симметрична $R$ относительно $AB$. Докажите, что $\angle R'PB = \angle RPA$.
Страница:
<< 53 54 55 56
57 58 59 >> [Всего задач: 1547]