ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 1547]      



Задача 55711

 [Теорема Монжа.]
Темы:   [ Центральная симметрия помогает решить задачу ]
[ Параллелограмм Вариньона ]
Сложность: 4+
Классы: 8,9

Докажите, что прямые, проведённые через середины сторон вписанного четырёхугольника перпендикулярно противоположным сторонам, пересекаются в одной точке.

Прислать комментарий     Решение


Задача 55780

Темы:   [ Гомотетия помогает решить задачу ]
[ Средняя линия треугольника ]
Сложность: 4+
Классы: 8,9

В четырёхугольнике ABCD стороны AB и CD равны, причём лучи AB и DC пересекаются в точке O. Докажите, что прямая, проходящая через середины диагоналей, перпендикулярна биссектрисе угла AOD.

Прислать комментарий     Решение


Задача 57826

Темы:   [ Параллельный перенос. Построения и геометрические места точек ]
[ Перенос помогает решить задачу ]
Сложность: 4+
Классы: 8,9

Найдите геометрическое место точек: а) сумма; б) разность расстояний от которых до двух данных прямых имеет данную величину.
Прислать комментарий     Решение


Задача 57827

Темы:   [ Параллельный перенос. Построения и геометрические места точек ]
[ Необычные построения ]
Сложность: 4+
Классы: 8,9

Угол, изготовленный из прозрачного материала, двигают так, что две непересекающиеся окружности касаются его сторон внутренним образом. Докажите, что на нем можно отметить точку, которая описывает дугу окружности.
Прислать комментарий     Решение


Задача 57844

Тема:   [ Центральная симметрия помогает решить задачу ]
Сложность: 4+
Классы: 9

В треугольнике ABC проведены медианы AF и CE. Докажите, что если $ \angle$BAF = $ \angle$BCE = 30o, то треугольник ABC правильный.
Прислать комментарий     Решение


Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 1547]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .