ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 1547]      



Задача 108664

Темы:   [ Гомотетия помогает решить задачу ]
[ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 8,9

Точки K и L на сторонах соответственно AB и AC остроугольного треугольника ABC таковы, что KL || BC ; M – точка пересечения перпендикуляров, восставленных в точках K и L к отрезкам AB и AC . Докажите, что точки A , M и центр O описанной окружности треугольника ABC лежат на одной прямой.
Прислать комментарий     Решение


Задача 108886

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Параллелограмм Вариньона ]
Сложность: 3
Классы: 8,9

В четырёхугольнике ABCD точки K , L , M , N – середины сторон соответственно AB , BC , CD , DA . Прямые AL и CK пересекаются в точке P , прямые AM и CN – пересекаются в точке Q . Оказалось, что APCQ – параллелограмм. Докажите, что ABCD – тоже параллелограмм.
Прислать комментарий     Решение


Задача 108911

Темы:   [ Симметрия помогает решить задачу ]
[ Общая касательная к двум окружностям ]
Сложность: 3
Классы: 8,9

Пусть A и B – две окружности, лежащие по одну сторону от прямой m . Постройте касательную к окружности A , которая после отражения от прямой m также коснётся окружности B .
Прислать комментарий     Решение


Задача 111075

Темы:   [ Параллельный перенос. Построения и геометрические места точек ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 3
Классы: 8,9

С помощью циркуля и линейки постройте хорду данной окружности, равную и параллельную данному отрезку.
Прислать комментарий     Решение


Задача 115932

Тема:   [ Свойства инверсии ]
Сложность: 3
Классы: 8,9

Пусть при инверсии относительно окружности с центром O точка A переходит в точку A' , а точка B — в B' . Докажите, что треугольники AOB и B'OA' подобны.
Прислать комментарий     Решение


Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 1547]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .