ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 1026]      



Задача 57954

Тема:   [ Поворот (прочее) ]
Сложность: 7
Классы: 9

По арене цирка, являющейся кругом радиуса 10 м, бегает лев. Двигаясь по ломаной линии, он пробежал 30 км. Докажите, что сумма всех углов его поворотов не меньше 2998 радиан.
Прислать комментарий     Решение


Задача 103742

Темы:   [ Свойства симметрии и центра симметрии ]
[ Центральная симметрия помогает решить задачу ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 2
Классы: 6

Как одним прямолинейным разрезом рассечь два лежащих на сковороде квадратных блина на две равные части каждый?

Прислать комментарий     Решение


Задача 116130

Темы:   [ Построение треугольников по различным точкам ]
[ Центральная симметрия помогает решить задачу ]
[ Метод ГМТ ]
Сложность: 2
Классы: 8,9

Автор: Фольклор

Hа доске была нарисована система координат и отмечены точки  A(1, 2)  и  B(3, 1).  Cистему координат стерли.
Bосстановите ее по двум отмеченным точкам.

Прислать комментарий     Решение

Задача 53305

Темы:   [ Равные треугольники. Признаки равенства ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 2+
Классы: 8,9

Отрезки AB и CD пересекаются в точке O, которая является серединой каждого из них. Чему равен отрезок BD, если отрезок  AC = 10?

Прислать комментарий     Решение

Задача 53327

Темы:   [ Равные треугольники. Признаки равенства ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 2+
Классы: 8,9

Два отрезка AB и CD пересекаются в точке O, которая является серединой каждого из них. Докажите равенство треугольников ACD и BDC.

Прислать комментарий     Решение

Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 1026]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .