Страница:
<< 95 96 97 98
99 100 101 >> [Всего задач: 1026]
|
|
Сложность: 4- Классы: 8,9,10
|
На сторонах АС и ВС равностороннего треугольника АВС отмечены точки D и Е соответственно так, что AD = ⅓ AC, CE = ⅓ CE. Отрезки АЕ и BD пересекаются в точке F. Найдите угол BFC.
Квадратный лист бумаги согнули по прямой так, что одна из вершин квадрата оказалась на несмежной стороне. При этом образовалось три треугольника. В эти треугольники вписали окружности (см. рис.). Докажите, что радиус одной из этих окружностей равен сумме радиусов двух других.
|
|
Сложность: 4- Классы: 8,9,10
|
Даны три квадратных трёхчлена P(x), Q(x) и
R(x) с положительными старшими коэффициентами, имеющие по два различных корня. Оказалось, что при подстановке корней трёхчлена R(x) в многочлен P(x) + Q(x) получаются равные значения. Аналогично при подстановке корней трёхчлена P(x) в многочлен Q(x) + R(x) получаются равные значения, а также при подстановке корней трёхчлена Q(x) в многочлен P(x) + R(x) получаются равные значения. Докажите, что три числа: сумма корней трёхчлена P(x), сумма корней трёхчлена Q(x) и сумма корней трёхчлена R(x) равны между собой.
Внутри острого угла даны точки M и N. Как из точки M
направить луч света, чтобы он, отразившись последовательно от
сторон угла, попал в точку N?
С помощью циркуля и линейки постройте треугольник по двум сторонам и разности
углов, прилежащих к третьей.
Страница:
<< 95 96 97 98
99 100 101 >> [Всего задач: 1026]