ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 563]      



Задача 55632

Темы:   [ Симметрия помогает решить задачу ]
[ Теорема Пифагора (прямая и обратная) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Точка M лежит на диаметре AB окружности. Хорда CD окружности проходит через точку M и пересекает прямую AB под углом в 45°.
Докажите, что величина  CM² + DM²  не зависит от выбора точки M.

Прислать комментарий     Решение

Задача 66995

Темы:   [ Симметрия помогает решить задачу ]
[ Вписанные и описанные окружности ]
[ Радиусы окружностей ]
Сложность: 3+
Классы: 8,9,10,11

На высотах $AA_0$, $BB_0$, $CC_0$ остроугольного неравностороннего треугольника $ABC$ отметили соответственно точки $A_1, B_1, C_1$ так, что  $AA_1 = BB_1 = CC_1 = R$,  где $R$ – радиус описанной окружности треугольника $ABC$. Докажите, что центр описанной окружности треугольника $A_1B_1C_1$ совпадает с центром вписанной окружности треугольника $ABC$.

Прислать комментарий     Решение

Задача 79295

Темы:   [ Свойства симметрий и осей симметрии ]
[ Обратный ход ]
Сложность: 3+
Классы: 10,11

Точка A расположена на расстоянии 50 см от центра круга радиуса 1 см. Разрешается точку A отразить симметрично относительно произвольной прямой, пересекающей круг; полученную точку отразить симметрично относительно любой прямой, пересекающей круг, и т.д. Доказать, что: а) за 25 отражений точку A можно переместить внутрь круга; б) за 24 отражения этого сделать нельзя.
Прислать комментарий     Решение


Задача 104098

Темы:   [ Симметрия помогает решить задачу ]
[ Наибольшая или наименьшая длина ]
[ Правильный (равносторонний) треугольник ]
[ Вспомогательные подобные треугольники ]
[ Периметр треугольника ]
Сложность: 3+
Классы: 8,9

Дан равносторонний треугольник АВС. Точка К – середина стороны АВ, точка М лежит на стороне ВС, причём  ВМ : МС = 1 : 3.  На стороне АС выбрана точка P так, что периметр треугольника РКМ – наименьший из возможных. В каком отношении точка Р делит сторону АС?
Прислать комментарий     Решение


Задача 108168

Темы:   [ Симметрия помогает решить задачу ]
[ Вспомогательные равные треугольники ]
[ Ломаные ]
Сложность: 3+
Классы: 8,9

Внутри острого угла XOY взяты точки M и N, причём  ∠XON = ∠YOM.  На луче OX отмечена точка Q так, что  ∠NQO = ∠MQX,  а на луче OY – точка P так, что  ∠NPO = ∠MPY.  Докажите, что длины ломаных MPN и MQN равны.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 563]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .