Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 563]
Точка M лежит на диаметре AB окружности. Хорда CD
окружности проходит через точку M и пересекает прямую AB под
углом в 45°.
Докажите, что величина CM² + DM² не зависит от выбора точки M.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
На высотах $AA_0$, $BB_0$, $CC_0$ остроугольного неравностороннего треугольника $ABC$ отметили соответственно точки $A_1, B_1, C_1$ так, что $AA_1 = BB_1 = CC_1 = R$, где $R$ – радиус описанной окружности треугольника $ABC$. Докажите, что центр описанной окружности треугольника $A_1B_1C_1$ совпадает с центром вписанной окружности треугольника $ABC$.
|
|
Сложность: 3+ Классы: 10,11
|
Точка
A расположена на расстоянии 50 см от центра круга радиуса 1 см.
Разрешается точку
A отразить симметрично относительно произвольной прямой,
пересекающей круг; полученную точку отразить симметрично относительно любой
прямой, пересекающей круг, и т.д. Доказать, что: а) за 25 отражений точку
A
можно переместить внутрь круга; б) за 24 отражения этого сделать нельзя.
Дан равносторонний треугольник АВС. Точка К – середина стороны АВ, точка М лежит на стороне ВС, причём ВМ : МС = 1 : 3. На стороне АС выбрана точка P так, что периметр треугольника РКМ – наименьший из возможных. В каком отношении точка Р делит сторону АС?
Внутри острого угла XOY взяты точки M и N, причём
∠XON = ∠YOM. На луче OX отмечена точка Q так, что ∠NQO = ∠MQX, а на луче OY – точка P так, что ∠NPO = ∠MPY. Докажите, что длины ломаных MPN и MQN равны.
Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 563]