Страница:
<< 1 2 3 4 5
6 7 >> [Всего задач: 31]
|
|
Сложность: 4- Классы: 7,8,9
|
Четыре кузнечика сидят в вершинах квадрата. Каждую минуту один из них прыгает
в точку, симметричную ему относительно другого кузнечика. Докажите, что
кузнечики не могут в некоторый момент оказаться в вершинах квадрата большего
размера.
|
|
Сложность: 4+ Классы: 8,9,10
|
В данный треугольник поместить центрально-симметричный многоугольник
наибольшей площади.
|
|
Сложность: 4+ Классы: 9,10,11
|
Дан выпуклый многоугольник и точка
O внутри него. Любая прямая, проходящая
через точку
O, делит площадь многоугольника пополам. Доказать, что
многоугольник центрально-симметричный и
O — центр симметрии.
|
|
Сложность: 4+ Классы: 8,9,10
|
Дан биллиард прямоугольной формы. В его углах имеются лузы, попадая в которые
шарик останавливается. Шарик выпускают из одного угла бильярда под углом
45
o к стороне. В какой-то момент он попал в середину некоторой
стороны. Доказать, что в середине противоположной стороны он побывать не мог.
Докажите, что выпуклый многоугольник имеет центр симметрии тогда и только
тогда, когда его можно представить в виде суммы нескольких отрезков.
Страница:
<< 1 2 3 4 5
6 7 >> [Всего задач: 31]