Страница:
<< 1 2
3 4 5 6 >> [Всего задач: 26]
|
|
Сложность: 3 Классы: 5,6,7
|
Из квадратного листа бумаги сложили треугольник (см. рисунки). Найдите отмеченный угол.
|
|
Сложность: 4- Классы: 8,9,10
|
На плоскости отмечена точка M, не лежащая на осях координат. По оси ординат движется точка Q, а по оси абсцисс точка P так, что угол PMQ всегда остаётся прямым. Найдите геометрическое место точек N, симметричных M относительно PQ.
На плоскости отмечены несколько (больше трёх) точек. Известно, что если выкинуть любую точку, то оставшиеся будут симметричны относительно какой-нибудь прямой. Верно ли, что все множество точек тоже симметрично относительно какой-нибудь прямой?
|
|
Сложность: 2+ Классы: 6,7,8
|
Барон Мюнхаузен утверждает, что пустил шар от борта бильярда, имеющего форму правильного треугольника, так, что тот, отражаясь от бортов, прошёл через некоторую точку три раза в трёх различных направлениях и вернулся в исходную точку. Могут ли слова барона быть правдой? (Отражение шара от борта происходит по закону "угол падения равен углу отражения".)
Поля клетчатой доски размером 8×8 будем по очереди закрашивать в красный
цвет так, чтобы после закрашивания каждой следующей клетки фигура, состоящая
из закрашенных клеток, имела ось симметрии. Покажите, как можно, соблюдая это
условие, закрасить
а) 26;
б) 28 клеток.
(В качестве ответа расставьте на тех клетках, которые должны быть закрашены,
числа от 1 до 26 или до 28 в том порядке, в котором проводилось закрашивание.)
Страница:
<< 1 2
3 4 5 6 >> [Всего задач: 26]