ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 492]      



Задача 55703

Темы:   [ Параллельный перенос (прочее) ]
[ Биссектриса угла (ГМТ) ]
Сложность: 4-
Классы: 8,9

Найдите геометрическое место точек, разность расстояний от которых до двух данных непараллельных прямых имеет данную величину.

Прислать комментарий     Решение

Задача 64876

Темы:   [ Вписанные и описанные окружности ]
[ ГМТ - прямая или отрезок ]
[ Вписанный угол равен половине центрального ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4-
Классы: 9,10,11

На окружности ω c центром O фиксированы точки A и C. Точка B движется по дуге AC. Точка P – фиксированная точка хорды AC. Прямая, проходящая через P параллельно AO, пересекает прямую BA в точке A1; прямая, проходящая через P параллельно CO, пересекает прямую BC в точке C1. Докажите, что центр описанной окружности треугольника A1BC1 движется по прямой.

Прислать комментарий     Решение

Задача 64972

Темы:   [ Осевая и скользящая симметрии (прочее) ]
[ ГМТ - прямая или отрезок ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9,10

На плоскости отмечена точка M, не лежащая на осях координат. По оси ординат движется точка Q, а по оси абсцисс точка P так, что угол PMQ всегда остаётся прямым. Найдите геометрическое место точек N, симметричных M относительно PQ.

Прислать комментарий     Решение

Задача 65058

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Неравенство треугольника (прочее) ]
Сложность: 4-
Классы: 8,9

В выпуклом четырёхугольнике ABCD некоторая точка диагонали АС принадлежит серединным перпендикулярам к сторонам АВ и CD, а некоторая точка диагонали BD принадлежит серединным перпендикулярам к сторонам AD и ВС. Докажите, что ABCD – прямоугольник.

Прислать комментарий     Решение

Задача 65081

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Биссектриса угла (ГМТ) ]
[ Симметрия помогает решить задачу ]
[ Вписанный угол, опирающийся на диаметр ]
[ Признаки подобия ]
Сложность: 4-
Классы: 8,9

В выпуклом четырёхугольнике ABCD углы B и D равны,  CD = 4BC,  а биссектриса угла A проходит через середину стороны CD.
Чему может быть равно отношение  AD : AB?

Прислать комментарий     Решение

Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 492]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .