Страница:
<< 68 69 70 71
72 73 74 >> [Всего задач: 492]
В прямоугольном треугольнике ABC проведена высота CK из
вершины прямого угла C, а в треугольнике ACK – биссектриса CE. Докажите, что CB = BE.
Рассмотрим два различных четырёхугольника с соответственно равными сторонами.
Докажите, что если у одного из них диагонали перпендикулярны, то и у другого тоже.
Дан угол и две точки внутри него. Постройте окружность, проходящую через эти точки и высекающую на сторонах угла равные отрезки.
Прямая, проходящая через центры двух окружностей называется их линией центров.
Докажите, что общие внешние (внутренние) касательные к двум окружностям пересекаются на линии центров этих окружностей.
В треугольнике ABC угол C равен 75°, а угол B равен 60°. Вершина M равнобедренного прямоугольного треугольника BCM с гипотенузой BC расположена внутри треугольника ABC. Найдите угол MAC.
Страница:
<< 68 69 70 71
72 73 74 >> [Всего задач: 492]