Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 84]
|
|
Сложность: 4- Классы: 9,10,11
|
На окружности ω c центром O фиксированы точки A и C. Точка B движется по дуге AC. Точка P – фиксированная точка хорды AC. Прямая, проходящая через P параллельно AO, пересекает прямую BA в точке A1; прямая, проходящая через P параллельно CO, пересекает прямую BC в точке C1. Докажите, что центр описанной окружности треугольника A1BC1 движется по прямой.
|
|
Сложность: 4- Классы: 8,9,10
|
На плоскости отмечена точка M, не лежащая на осях координат. По оси ординат движется точка Q, а по оси абсцисс точка P так, что угол PMQ всегда остаётся прямым. Найдите геометрическое место точек N, симметричных M относительно PQ.
|
|
Сложность: 4- Классы: 8,9,10
|
Робот-пылесос, имеющий форму круга, проехал по плоскому полу. Для каждой точки граничной окружности робота можно указать прямую, на которой эта точка оставалась в течение всего времени движения. Обязательно ли и центр робота оставался на некоторой прямой в течение всего времени движения?
|
|
Сложность: 4- Классы: 8,9,10
|
По стороне AB треугольника ABC движется точка X, а по описанной окружности Ω – точка Y так, что прямая XY проходит через середину дуги AB. Найдите геометрическое место центров описанных окружностей треугольников IXY, где I – центр вписанной окружности треугольника ABC.
Даны трапеция ABCD и перпендикулярная её основаниям AD и BC прямая l. По l движется точка X. Перпендикуляры, опущенные из A на BX и из D на CX пересекаются в точке Y. Найдите ГМТ Y.
Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 84]