ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Существует ли такое положительное число α, что при всех действительных x верно неравенство |cos x| + |cos αx| > sin x + sin αx? ![]() ![]() С помощью признака делимости Паскаля (см. задачу 60815) установите признаки делимости на числа 3, 9, 6, 8, 12, 15, 11, 7, 27, 37. ![]() ![]() ![]() На плоскости дано n выпуклых попарно пересекающихся k-угольников. Каждый из них можно перевести в любой другой гомотетией с положительным коэффициентом. Докажите, что на плоскости найдётся точка, принадлежащая хотя бы ![]() ![]() ![]() Исходно на доске написаны многочлены x³ – 3x² + 5 и x² – 4x. Если на доске уже написаны многочлены f(x) и g(x), разрешается дописать на неё многочлены f(x) ± g(x), f(x)g(x), f(g(x)) и cf(x), где c – произвольная (не обязательно целая) константа. Может ли на доске после нескольких операций появиться многочлен вида xn – 1 (при натуральном n)? ![]() ![]() ![]() Точка M – середина стороны AC остроугольного треугольника ABC, в котором AB > BC. Касательные к описанной окружности Ω треугольника ABC, проведённые в точках A и C, пересекаются в точке P. Отрезки BP и AC пересекаются в точке S. Пусть AD – высота треугольника BP. Описанная окружность ω треугольника CSD второй раз пересекает окружность Ω в точке K. Докажите, что ∠CKM = 90°. ![]() ![]() ![]() Докажите, что если числа N и 5N имеют одинаковую сумму цифр, то N делится на 9. ![]() ![]() |
Страница: 1 2 3 4 >> [Всего задач: 20]
б) Найдите ГМТ, равноудаленных от двух пересекающихся прямых.
Страница: 1 2 3 4 >> [Всего задач: 20] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |