Страница: 1
2 >> [Всего задач: 9]
|
|
Сложность: 3+ Классы: 10,11
|
Вписанная и вневписанная сферы треугольной пирамиды ABCD касаются её грани BCD в различных точках X и Y.
Докажите, что треугольник AXY тупоугольный.
Вначале на плоскости были отмечены три различные точки. Каждую минуту выбирались некоторые три из отмеченных точек – обозначим их A, B и C, после чего на плоскости отмечалась точка D, симметричная A относительно серединного перпендикуляра к BC. Через сутки оказалось, что среди отмеченных точек нашлись три различные точки, лежащие на одной прямой. Докажите, что три исходных точки также лежали на одной прямой.
|
|
Сложность: 4- Классы: 10,11
|
На окружности, описанной около прямоугольника ABCD, выбрана точка K. Оказалось, что прямая CK пересекает отрезок AD в такой точке M, что
AM : MD = 2. Пусть O – центр прямоугольника. Докажите, что точка пересечения медиан треугольника OKD лежит на описанной окружности треугольника COD.
|
|
Сложность: 4 Классы: 8,9,10
|
Точка M – середина стороны AC остроугольного треугольника ABC, в котором AB > BC. Касательные к описанной окружности Ω треугольника ABC, проведённые в точках A и C, пересекаются в точке P. Отрезки BP и AC пересекаются в точке S. Пусть AD – высота треугольника BP. Описанная окружность ω треугольника CSD второй раз пересекает окружность Ω в точке K. Докажите, что ∠CKM = 90°.
|
|
Сложность: 4 Классы: 8,9,10
|
На окружности отмечено 2N точек (N – натуральное число).
Известно, что через любую точку внутри окружности проходит не более двух хорд с концами в отмеченных точках. Назовем паросочетанием такой набор из N хорд с концами в отмеченных точках, что каждая отмеченная точка является концом ровно одной из этих хорд. Назовём паросочетание чётным, если количество точек, в которых пересекаются его хорды, чётно, и нечётным иначе. Найдите разность между количеством чётных и нечётных паросочетаний.
Страница: 1
2 >> [Всего задач: 9]