Страница:
<< 30 31 32 33
34 35 36 >> [Всего задач: 204]
|
|
Сложность: 3 Классы: 8,9,10
|
Докажите, что никакой выпуклый многоугольник нельзя разрезать на 100 различных правильных треугольников.
|
|
Сложность: 3 Классы: 8,9,10
|
Выпуклая оболочка. Докажите, что для
любого числа точек плоскости найдется выпуклый многоугольник с
вершинами в некоторых из них, содержащий внутри себя все
остальные точки.
Два треугольника пересекаются. Докажите, что внутри описанной окружности одного из них лежит хотя бы одна вершина другого. (Треугольником считается часть плоскости, ограниченная замкнутой трёхзвенной ломаной; точка, лежащая на окружности, считается лежащей внутри неё.)
|
|
Сложность: 3+ Классы: 8,9,10
|
На круглой сковороде площади 1 испекли выпуклый блин площади больше ½.
Докажите, что центр сковороды находится под блином.
|
|
Сложность: 3+ Классы: 9,10,11
|
Даны выпуклый многоугольник и квадрат. Известно, что как ни расположи две копии многоугольника внутри квадрата, найдётся точка, принадлежащая обеим копиям. Докажите, что как ни расположи три копии многоугольника внутри квадрата, найдётся точка, принадлежащая всем трём копиям.
Страница:
<< 30 31 32 33
34 35 36 >> [Всего задач: 204]