Страница:
<< 33 34 35 36
37 38 39 >> [Всего задач: 204]
|
|
Сложность: 4 Классы: 7,8,9
|
Выпуклый многоугольник разбит на параллелограммы. Вершину многоугольника,
принадлежащую только одному параллелограмму, назовем хорошей.
Докажите, что хороших вершин не менее трех.
|
|
Сложность: 4 Классы: 7,8,9
|
Два игрока по очереди проводят диагонали в правильном (2n+1)-угольнике (n > 1). Разрешается проводить диагональ, если она пересекается (по внутренним точкам) с чётным числом ранее проведённых диагоналей (и не была проведена раньше). Проигрывает игрок, который не может сделать очередной ход. Кто выиграет при правильной игре?
|
|
Сложность: 4+ Классы: 8,9,10
|
Дан выпуклый 2000-угольник, никакие три диагонали которого не пересекаются
в одной точке. Каждая из его диагоналей покрашена в один из 999 цветов.
Докажите, что существует треугольник, все стороны которого целиком
лежат на диагоналях одного цвета. (Вершины треугольника не
обязательно должны оказаться вершинами исходного многоугольника.)
|
|
Сложность: 4+ Классы: 9,10,11
|
На плоскости лежат две одинаковые фигуры, имеющие форму буквы ``Г'' . Концы
коротких палочек у букв ``Г'' обозначим через
A и
A'. Длинные палочки
разделены на
n равных частей точками
a1, ...,
an - 1;
a'1,
...,
a'n - 1 (точки деления нумеруются от концов длинных палочек).
Проводятся прямые
Aa1,
Aa2, ...,
Aan - 1;
A'a
1,
A'a'2,
...,
A'a'n - 1. Точку пересечения прямых
Aa1 и
A'a
1 обозначим
через
X1, прямых
Aa2 и
A'a
2 — через
X2 и т.д. Доказать, что
точки
X1,
X2, ...,
Xn - 1 образуют выпуклый многоугольник.
Примечание Problems.Ru: Предполагается, что данные фигуры совмещаются движением, сохраняющим ориентацию.
|
|
Сложность: 4+ Классы: 8,9,10
|
а) Докажите, что при
n>4
любой выпуклый
n -угольник
можно разрезать на
n тупоугольных треугольников.
б) Докажите, что при любом
n существует выпуклый
n -угольник,
который нельзя разрезать меньше, чем на
n тупоугольных
треугольников.
в) На какое наименьшее число тупоугольных треугольников можно
разрезать прямоугольник?
Страница:
<< 33 34 35 36
37 38 39 >> [Всего задач: 204]