ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 132]      



Задача 64509

Темы:   [ Выпуклые многоугольники ]
[ Четность и нечетность ]
[ Правило произведения ]
Сложность: 3
Классы: 8,9,10

В выпуклом 2009-угольнике проведены все диагонали. Прямая пересекает 2009-угольник, но не проходит через его вершины.
Докажите, что прямая пересекает чётное число диагоналей.

Прислать комментарий     Решение

Задача 65752

Темы:   [ Выпуклые многоугольники ]
[ Доказательство от противного ]
[ Теория игр (прочее) ]
Сложность: 3
Классы: 10,11

Внутри выпуклого 100-угольника выбрана точка X, не лежащая ни на одной его стороне или диагонали. Исходно вершины многоугольника не отмечены. Петя и Вася по очереди отмечают ещё не отмеченные вершины 100-угольника, причём Петя начинает и первым ходом отмечает сразу две вершины, а далее каждый своим очередным ходом отмечает по одной вершине. Проигрывает тот, после чьего хода точка X будет лежать внутри многоугольника с отмеченными вершинами. Докажите, что Петя может выиграть, как бы ни ходил Вася.

Прислать комментарий     Решение

Задача 79287

Темы:   [ Выпуклые многоугольники ]
[ Принцип крайнего ]
[ Задачи с ограничениями ]
Сложность: 3
Классы: 7,8,9

Доказать, что в произвольном выпуклом 2n-угольнике найдётся диагональ, не параллельная ни одной из его сторон.

Прислать комментарий     Решение

Задача 79336

Темы:   [ Выпуклые многоугольники ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 8,9

В каждой вершине выпуклого k-угольника находится охотник, вооруженный лазерным ружьем. Все охотники одновременно выстрелили в зайца, сидящего в точке O внутри этого k-угольника. В момент выстрела заяц пригибается, и все охотники погибают. Доказать, что нет другой точки, кроме O, обладающей указанным свойством.
Прислать комментарий     Решение


Задача 35217

Тема:   [ Выпуклые многоугольники ]
Сложность: 3
Классы: 10,11

На плоскости нарисовано несколько попарно непараллельных прямых, по каждой из которых в одном из двух направлений ползет жук со скоростью 1 сантиметр в секунду. Докажите, что в какой-то момент жуки окажутся в вершинах выпуклого многоугольника.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 132]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .