Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 56]
|
|
Сложность: 4 Классы: 8,9,10
|
Можно ли во всех точках плоскости с целыми координатами записать натуральные
числа так, чтобы три точки с целыми координатами лежали на одной прямой тогда и только тогда, когда записанные в них числа имели общий делитель, больший единицы?
Можно ли так раскрасить все клетки бесконечной клетчатой плоскости в белый и чёрный цвета, чтобы каждая вертикальная прямая и каждая горизонтальная прямая пересекали конечное число белых клеток, а каждая наклонная прямая конечное число чёрных?
|
|
Сложность: 4+ Классы: 9,10,11
|
Каждый узел бесконечной сетки покрашен в один из четырёх цветов так, что вершины каждого квадрата со стороной 1 окрашены в разные цвета. Верно ли, что узлы одной из прямых сетки окрашены только в два цвета? (Сетка образована горизонтальными и вертикальными прямыми. Расстояние между соседними параллельными прямыми равно 1.)
|
|
Сложность: 5- Классы: 8,9,10
|
Паутина имеет вид клетчатой сетки 100×100 узлов (другими словами, это сетка 99×99 клеток). В каком-то её углу сидит паук, а в некоторых 100 узлах к паутине приклеились мухи. За ход паук может переместиться в любой соседний с ним узел. Может ли паук гарантированно съесть всех мух, затратив не более
а) 2100 ходов;
б) 2000 ходов?
Докажите, что для любого
n существует окружность, внутри которой
лежит ровно
n целочисленных точек.
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 56]