Страница:
<< 1 2 3 4 5 6 7 [Всего задач: 33]
|
|
Сложность: 4+ Классы: 8,9,10
|
На плоскости даны 25 точек; известно, что из любых трёх точек можно выбрать
две, расстояние между которыми меньше 1. Доказать, что среди данных точек
найдутся 13, лежащие в круге радиуса 1.
|
|
Сложность: 5- Классы: 8,9,10
|
Круглый пирог режут следующим образом. Вырезают сектор с углом
,
переворачивают его на другую сторону и весь пирог поворачивают на угол
.
Дано, что
<
< 180
o. Доказать, что после некоторого
конечного числа таких операций каждая точка пирога будет находиться на том же
месте, что и в начале.
|
|
Сложность: 3+ Классы: 8,9,10
|
Над квадратным катком нужно повесить четыре лампы так, чтобы они его полностью
освещали. На какой наименьшей высоте нужно повесить лампы, если каждая лампа
освещает круг радиуса, равного высоте, на которой она висит?
Страница:
<< 1 2 3 4 5 6 7 [Всего задач: 33]