Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 56]
|
|
Сложность: 4 Классы: 8,9,10
|
На координатной плоскости расположены четыре фишки, центры которых имеют целочисленные координаты.
Разрешается сдвинуть любую фишку на вектор, соединяющий центры любых двух из остальных фишек.
Докажите, что несколькими такими перемещениями можно совместить любые две наперед заданные фишки.
По шоссе в одну сторону движутся пешеход и велосипедист, в другую сторону – телега и машина. Все участники движутся с постоянными скоростями (каждый со своей). Велосипедист сначала обогнал пешехода, потом через некоторое время встретил телегу, а потом ещё через такое же время встретил машину. Машина сначала встретила велосипедиста, потом через некоторое время встретила пешехода, и потом ещё через такое же время обогнала телегу. Велосипедист обогнал пешехода в 10 часов, а пешеход встретил машину в 11 часов. Когда пешеход встретил телегу?
Дан треугольник ABC. На его сторонах AB и BC зафиксированы точки C1 и A1 соответственно. Найдите на описанной окружности треугольника ABC такую точку P, что расстояние между центрами описанных окружностей треугольников APC1 и CPA1 минимально.
|
|
Сложность: 5- Классы: 8,9,10,11
|
Через вершины треугольника ABC проводятся три произвольные параллельные прямые da, db, dc. Прямые, симметричные da, db, dc относительно BC, CA, AB соответственно, образуют треугольник XYZ. Найдите геометрическое место центров вписанных окружностей таких треугольников.
Пусть
B' — точка описанной окружности остроугольного
треугольника
ABC , диаметрально противоположная вершине
B ;
I — центр вписанной окружности треугольника
ABC ;
M —
точка касания вписанной окружности со стороной
AC . На сторонах
AB и
BC выбраны соответственно точки
K и
L , причём
KB=MC и
LB=AM . Докажите, что прямые
B'I и
KL перпендикулярны.
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 56]