ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 222]
Пусть A1, B1, C1 – середины сторон треугольника ABC, I – центр вписанной в него окружности, C2 – точка пересечения прямых C1I и A1B1, C3 – точка пересечения прямых CC2 и AB. Докажите, что прямая IC3 перпендикулярна прямой AB.
Вписанная окружность касается сторон треугольника ABC в точках A1, B1 и C1; точки A2, B2 и C2 симметричны этим точкам относительно биссектрис соответствующих углов треугольника. Докажите, что A2B2 || AB и прямые AA2, BB2 и CC2 пересекаются в одной точке.
На плоскости даны три прямые l1, l2, l3, образующие треугольник, и отмечена точка O – центр описанной окружности этого треугольника. Для произвольной точки X плоскости обозначим через Xi точку, симметричную точке X относительно прямой li, i = 1, 2, 3.
Биссектрисы углов A и C треугольника ABC пересекают его стороны в точках A1 и C1, а описанную окружность этого треугольника – в точках A0 и C0 соответственно. Прямые A1C1 и A0C0 пересекаются в точке P. Докажите, что отрезок, соединяющий P с центром вписанной окружности треугольника ABC, параллелен AC.
Дана четырёхугольная пирамида, в которую можно вписать сферу. Точку касания этой сферы с основанием пирамиды спроектировали на рёбра основания. Докажите, что все проекции лежат на одной окружности.
Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 222] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |